Map Reading

 and Navigation Skills

Index

1. Requirements
2. Navigation
3. Map Reading
4. Compass
5. Map Orientation
6. Measuring Distance
7. Resection
8. Pace Count
9. Orienteering Techniques
10. Staying Found
11. Orienteering Maps
12. Orienteering Control Symbols
13. Orienteering Compass
14. Universal Transverse Mercator
15. Grid Coordinates
16. Wilderness Survival Navigation
17. Resources
18. Instructor's Corner

Copyright Notice

This presentation is protected by US and International copyright laws. Reproduction and distribution of this presentation without written permission of the sponsor is prohibited.
© 2022

Copyright Notice

Do NOT post or upload copies of this presentation on the WEB!

Terms and Conditions of Use

This slide set was designed to aid Scouters and Scouts to work on Map Reading and Navigation Skills.

Scouts, Merit Badge Counselors and other Scouters are free us use this material for teaching and learning Merit Badge requirements. Use of material in other scout related classes is also acceptable.

You may modify (add, delete, change) the slides for your own personalized use.

Do not post original or modified versions of these slides on the internet.

Questions? Contact the owner.

Disclaimer

This PowerPoint slideshow was designed to be used to prepare scouts for the Map Reading and Navigation Requirements and nothing more.

Information here should help you complete your rank or merit badge requirements, but supervised real-life experience is needed to learn these skills.

Navigation in urban and non urban areas is dangerous. Proceed at your own risk.

Examples used and opinions shared do not reflect policies of the BSA, your local council or any other person or entity related to this presentation.

Requirements

Requirements

Requirements

- Map Reading is required in:
- Orienteering Merit Badge
- Geocaching Merit Badge
- Backpacking Merit Badge
- Snow Sports Merit Badge
- Search and Rescue Merit Badge
- BSA Rank Requirements

Requirements

Requirements - Scout Rank - Second Class

3a. Demonstrate how a compass works and how to orient a map. Use a map to point out and tell the meaning of five map symbols.

3b. Using a compass and map together, take a 5-mile hike (or 10 miles by bike) approved by your adult leader and your parent or guardian. 2

3c. Describe some hazards or injuries that you might encounter on your hike and what you can do to help prevent them. ${ }^{2}$

3d. Demonstrate how to find directions during the day and at night without using a compass or an electronic device.

Requirements

Requirements - Scout Rank - First Class

4a. Using a map and compass, complete an orienteering course that covers at least one mile and requires measuring the height and/ or width of designated items (tree, tower, canyon, ditch, etc.).

4b. Demonstrate how to use a handheld GPS unit, GPS app on a smartphone, or other electronic navigation system. Use GPS to find your current location, a destination of your choice, and the route you will take to get there. Follow that route to arrive at your destination.

Navigation

Navigation

Map and Compass Skills

- Vital skill set required for backcountry adventures
- Helps prevent you from getting lost
- Helps you re-find your location when lost
- Helps you plan out your trip
- Good places to sleep
- Good places for resources such as water and fish
- Find places to explore or for view
- Identify places to avoid

Map Reading

USGS Topographical Map

viewer.nationalmap.gov/basic

Map Legend

Topographic Maps

Contour Lines

USGS Map Symbols

pubs.usgs.gov
Topographic contours are shownim brown by lines of different
nidhs. Each contour is tine of equal elevation: therefore, contouis
never cross. They show the general shape of the terrain. To help
he user detemine celvations.index contours are wider. Elevation
yalues are printed in several places along these lines. The narrower
internediate and supplementary coltours found between the index
mietricetate and supplementary conkours found between the index
contours help to show more details of the land surface shape. Con-
contours help to show more detals of the land surface shape. C
tourr that are yery close together represent steep slopes. Widely
paced contours or an abbesice of contors means that the ground
slope is relatively level. The elevation difference hetween adjecent

Reading Topographic Maps
 or arreas, depending on their size and extent. For example, individual houses may be shown as small black squares. For larger buildings, vidual buildings are omitted and an area tint is shown. Onsome maps, post offices, churches, city halls, and other landmark buildings are shown within the tinted are
The firs features usually noticed on a topographic map que the built-up areas (gray or red).
Many features are shown by lines that may be straight, curved, solid, dashed, doteded. or in any combination. The colors of the ines
usually indicate similar classes of information: topographic contours (brown): lakes. streams, irigigation ditches, and other hydrographic
features (blue) : land grids and important roads (red): and other roa Ieatures (blue); and grid and important roads (reed): and other road At one time, purple was sused as a revision color to thow all feature changes. Currenty: purple is not tised in our revision program, but
purple features are stillppesent on many existing maps. , Various point symbols are ised to depict features suych as buildings. and wells. Names of places and features aré shown in a color cors. esponding to the type of feature: Many features are identified by bes, such as substation or -Goth Course. stope is reatively leve.. The elevation difierence between adjacent
contour lines, called hhe contour interval, is selected to best show The general shape of the terrain. A map of a relatively flat area may
have a contour interval of 10 feet or less. Maps in mountainous have a contour interval of 10 feet or less. Maps in mountainous
arcas may have contour intervals of 100 feet or more The conts niterval is printed in the margin of each U.S. Geologicat Surve
USGS man
heier location. They show the shape and slope of the ocean bottom surface. The bathymetric contour interval may vary on each map an is explained in the map margin.

VEGETATION	
Woodland	
Shrubland	
Orchard	
Vineyard	
Mangrove	Mita Mangrove)
SURFACE FEATURES	
Levee	- L-evee
Sand or mud	Sand
Disturbed surface	
Gravel beach or glacial moraine	Gravel
Tailings pond	$\begin{aligned} & \text { Tailings) } \\ & \left.\begin{array}{l} \text { Pond } \\ \hline \end{array}\right) \end{aligned}$
MINES AND CAVES	
Quarry or open pit mine	父
Gravel, sand, clay, or borrow pit	x
Mine tunnel or cave entrance	\checkmark
Mine shaft	-
Prospect	x
Tailings	(Tailings)
Mine dump	" = =
Former disposal site or mine	

\section*{ROADS AND RELATED FEATURES
 Please note: Roads on Provisional-edition maps are not classified
 as primary, secondary, or light duty. These roads are all classified as
 improved roads and are symbolized the same as light duty roads.
 | Primary highway | |
| :---: | :---: |
| Secondary highway | - - |
| Light duty road | - |
| Light duty road, paved* | |
| Light duty road, gravel* | $\underline{\square-}$ |
| Light duty road, dirt* | \ldots |
| Light duty road, unspecified* | |
| Unimproved road | ======= |
| Unimproved road* | ======: |
| 4WD road | - -------- |
| 4WD road* | ======= |
| Trail | -------- |
| Highway or road with median strip | |
| Highway or road under construction | Const |
| righway or road under construction | Const |
| Highway or road underpass; overpass | I |
| | 1 |
| Highway or road bridge; drawbridge | |
| Highway or road tunnel | ====== |
| Road block, berm, or barrier* | 1 |
| Gate on road* | $\underline{1}$ |
| Trailhead* | (${ }_{\text {T }}^{\mathbf{H}}$ |

TRANSMISSION LINES AND PIPELINES

Power transmission line; pole; tower	$-\infty-$	$\underline{\text { Telephone }}$
Telephone line	$-\infty$	Pipeline
Aboveground pipeline		
Underground pipeline		

RAILROADS AND RELATED FEATURES
Standard gauge railroad, single track
Standard gauge railroad, multiple track
Narrow gauge railroad, single track
Railroad siding Railroad in highway Railroad in light duty road*
Railroad underpass; overpass
Railroad bridge; drawbridge

RIVERS，LAKES，AND CANALS	
Perennial stream	\bigcirc
Perennial river	工
Intermittent stream	－
Intermittent river	$\therefore \quad=\cdots-$
Disappearing stream	$\xrightarrow{\sim}$
Falls，small	$1-1$
Falls，large	注
Rapids，small	\＃－
Rapids，large	
Masonry dam	
Dam with lock	
Dam carrying road	
Perennial lake／pond	
Intermittent lake／pond	\square
Dry lake／pond	$\cdots, \begin{aligned} & \text { Dry } \\ & \text { Lake } \end{aligned}$
Narrow wash	$\underline{-}$
Wide wash	－Wowash
Canal，flume，or aqueduct with lock	\longrightarrow
Elevated aqueduct，flume，or conduit	$\rightarrow \longrightarrow$
Aqueduct tunnel	$\rightarrow====$ ¢
Water well，geyser，fumarole，or mud pot	t $\circ \circ$
Spring or seep	－$\}$

MARINE SHORELINES	
Shoreline	\sim
Apparent（edge of vegetation）＊＊＊	\cdots
Indefinite or unsurveyed	－－－－－
COASTAL FEATURES	
Foreshore flat	
Coral or rock reef	
Rock，bare or awash；dangerous to navigation	＊＊
Group of rocks，bare or awash	$*_{* * * * *}$
Exposed wreck	x
Depth curve；sounding	_18
Breakwater，pier，jetty，or wharf	$\boxed{\square}$
Seawall	\square
Oil or gas well；platform	$\bigcirc \cdot$
BATHYMETRIC FEATURES	
Area exposed at mean low tide；sounding datum line＊＊＊	
Channel＊＊＊	ニニニニニ
Sunken rock＊＊＊	＋

National	-
State or territorial	- - - -
County or equivalent	- - - -
Civil township or equivalent	-
Incorporated city or equivalent	-------------
Federally administered park, reservation, or monument (external)	
Federally administered park, reservation, or monument (internal)	
State forest, park, reservation, or monument and large county park	
Forest Service administrative area*	-
Forest Service ranger district*	- - -
National Forest System land status, Forest Service lands*	
National Forest System land status, non-Forest Service lands*	
PROJECTION AND GRIDS	
Neatline	$\begin{aligned} & 39^{\circ} 37^{\prime} 30^{\prime \prime} 15^{\prime} \end{aligned}$
Graticule tick	$\dagger 55^{\prime}$
Graticule intersection	$+$
Datum shift tick	${ }_{-}^{+}$
State plane coordinate systems	
Primary zone tick	640000 FEET
Secondary zone tick	247500 METERS
Tertiary zone tick	260000 FEET
Quaternary zone tick	98500 METERS
Quintary zone tick	320000 FEET
Universal transverse metcator grid	
UTM grid (full grid)	273
UTM grid ticks*	269

LAND SURVEYS

Public land survey system							
Range or Township line							
Location approximate	-------	CONTROL DATA AND MONUMENTS					
Location doubtful	- - - -	Principal point**	© 3-20				
Protracted	-----------------						
Protracted (AK 1:63,360-scale)	-	U.S. mineral or location monument	- USMM 438				
Range or Township labels	R1E T2N R3W T4S	River mileage marker	$\begin{gathered} \text { Mile } \\ 69 \\ \hline \end{gathered}$				
Section line		Boundary monument					
Location approximate	$----\quad-\quad-$	Third-order or better elevation, with tablet	$B M_{\square}{ }_{9134}$	BM 中 277			
Location doubtful	- - -						
Protracted	-----------------	Third-order or better elevation, recoverable mark, no tablet	$\square^{\square} 5628$				
Protracted (AK 1:63,360-scale)							
Section numbers	1-36 1-36	With number and elevation	67 ${ }_{4} 457$				
Found section corner	-	Horizontal control					
	- + -	Third-order or better, permanent mark	\triangle Neace 4 Neace				
	$!$	With third-order or better elevation	$\begin{aligned} & B M_{\triangle_{52}} \star \text { Pike } \\ & \text { BM393 } \end{aligned}$				
Witness corner	WC	With checked spot elevation	$\triangle 1012$				
		Coincident with found section corner					
Meander corner	$-1 \mathrm{MC}$						
		Vertical control					
Weak corner*	-+						
		Third-order or better elevation, with tabl	et $\mathrm{BM} \times{ }_{5280}$				
Other land surveys	Third-order or better elevation, recoverable mark, no tablet	$\times 528$				
Range or Township line							
Section line	Bench mark coincident with found section corner	$\stackrel{B M}{+}+\frac{}{5280}$				
Land grant, mining claim, donation land							
claim, or tract		Spot elevation	$\times 7523$				

Compass

Compass

Surveying Compass

- Extremely accurate
- Engineering
- Surveying
- Artillery
- Caving
- NOT for Orienteering
- NO Bearing ring
- Bulky
- Needs protractor
- Adjustable Declination
- Air filled needle housing
- Expedition Quality
- Needle lock
- Extremely Expensive

Compass

Lensatic Compass

Rouged Clamshell and Non-Liquid Design
Water, Sand and Freeze proof Needle Ring Locks In Place During Transport

- Very accurate for measuring azimuths
- Glows at night
- Expedition durability
- Base NOT transparent
- Need protractor
- NO declination adjustment
- Expensive
- Bulky

Magnifying
Lens

Cammenga Tritium 3H

Compass

Mirror Compass

- Excellent compass
- Adjustable declination
- Global option
- Fast jewel bearing
- Southern hemisphere usable
- 20° tilt margin
- Mirror
- Accurate long-range azimuth
- Signaling device
- Magnifying Glass
- Fire starter
- First-aid
- Clinometer
- Made in Finland
- Excellent Compass
- Expensive
- More than what you need for orienteering

Compass

The Baseplate Compass

- Very versatile
- Transparent
- Simple
- Economical options
- Often get you pay for
- Quality varies

Stencil Hole
Declination Adjustment (Some models)
Orienting Arrow
Orienting Lines
Compass Needle
Declination Scale (fixed)

Baseplate

Compass

Orienteering Compass

- Bare minimum for Orienteering
- Lightweight
- Hands free
- Lack versatility

Direction of Travel Straight Edge/Pointer

Rotating Orienting Lines

AIM sectors

SUUNTO AIM-6 NH COMPASS

SCALE 1:24000

WA Sedro-Woolley South 20200305 TM geo.pdf

SCALE 1:24000

Compass

Magnetic Declination

Magnetic declination is an important concept to understand when using a magnetic compass

Compass

Magnetic Declination

A compass doesn't point at the North Pole

Compass

Magnetic Declination

The Earth creates its own magnetic field from the electric currents created in the liquid iron-nickel core.

Compass

Magnetic Declination

The poles also slowly move over time... Now more than 30 miles per year

Model by A. Jockson, A R. T. Jonkers, M, R. Walker,
Phil. Trans. R. Soc. London A (2000). 358, 957-990

Main Field Total Intensity (F)

Totat filensity (F)

Compass

Magnetic Inclination

The earth's magnetic field is 3 dimensional

- Northern Zones - Needle dives
- Magnetic Equator - Needle balanced
- Southern Zones - Needle climbs

Compass

Magnetic Inclination

A needle on a compass will dip and rise with the Earth's magnetic field

- Most compasses are balanced to compensate for inclination
- A compass balanced for the USA will drag in Australia
- A compass balanced for Australia will drag in the USA

"Global" Compass

- RECTA and Suunto Global Needle System
- Compass needle and magnet are built as separate units
- Needle fixed at its pivot by means of a double bearing
- Magnet rotates on a pivot with its own jeweled bearing
- Needle does NOT dip with magnetic inclination

Magnetic Declination

UTM GRID AND 2019 MAGNETIC NORTH DECLINATION AT CENTER OF SHEET

Magnetic Field Calculators

Declination U.S. Historic Declination Magnetic Field Magnetic Field Component Grid

Magnetic Declination Estimated Value ©

Declination is calculated using the most recent World Magnetic Model (WMM) or the International Geomagnetic Reference Field (IGRF) model. For 1590 to 1900 the calculator is based on the gufm1 model. A smooth transition from gufm1 to IGRF was imposed from 1890 to 1900. The Enhanced Magnetic Model (EMM) is a research model compiled from satellite, marine, aeromagnetic and ground magnetic surveys which attempts to include crustal variations in the magnetic field too fine to appear in the World Magnetic Model. Declination results are typically accurate to 30 minutes of arc, but environmental factors can cause magnetic field disturbances. The calculator provides an easy way for you to get results in HTML, XML, CSV, or JSON programmatically (API). For more information click the information button above

Calculate Declination

Latitude:	$48^{\circ} 23^{\prime} 18^{\prime \prime}$	OSON
Longitude:	$122^{\circ} 10^{\prime} 55^{\prime \prime}$	OW○E

> | Model: | O WMM (2019-2024) \bigcirc IGRF (1590-2024) |
| :--- | :--- |
| | \bigcirc EMM (2000-2019) |

Date:	Year	2021 V	Month	1	\checkmark	Day	9	\checkmark

Result format: OHTML ○ XML OcsV ○Json OpdF

Calculate

Lookup Latitude / Longitude

Enter a street address, street name, or street intersection. For best results, include as much location information as possible with the street address in your search, such as city, state, zip code.
Location: $\quad 26027$ Walker Valley Rd, I

Get \& Add Lat/Lon

Model Used:	WMM-2020 $^{\prime 2}$
Latitude:	$48^{\circ} 23^{\prime} 18^{\prime \prime} \mathrm{N}$
Longitude:	$122^{\circ} 10^{\prime} 55^{\prime \prime} \mathrm{W}$
Date	Declination

$+$

County of Skagit, Bureau ... \in sil

Compass

Magnetic Declination - Conversions

Converting between Grid and Magnetic North requires a bit of math

To convert a
Magnetic Azimuth to a
Grid Azimuth SUBTRACT angle

To convert a Grid Azimuth to a Magnetic Azimuth ADD angle

East Declination

West Declination

To convert a
Magnetic Azimuth to a Grid Azimuth
ADD angle

To convert a Grid Azimuth to a Magnetic Azimuth SUBTRACT angle

Compass

Magnetic Dedination

Direction

Measure angle with protractor

Grid Azimuth $=55^{\circ}$
Subtract 15.5°
Magnetic Azimuth $=39.5^{\circ}$

Map Orientation

Map Orientation

Map Orientation

Show how to orient a map using a compass.

Map Orientation

Map Orientation

Line up
Map and Needle Like Declination Diagram

UTM GRID AND 2019 MAGNETIC NORTH DECLINATION AT CENTER OF SHEET

Map Orientation

Map Orientation

Map Orientation

Direction of Travel

Map Orientation

Line up Compass

 with points$0^{\circ} 36^{\prime}$
Measure angle with Compass Grid Azimuth $=55^{\circ}$ Subtract 15.5°
Magnetic Azimuth $=39.5^{\circ}$

Compass Adjusted for Magnetic Declination

Compass Adjusted for Magnetic Declination

Dog

Doghouse
"Red in the Shed"
Or
"Dog in the Doghouse"

Compass with Adjustable Declination

Map Orientation

Adjust declination
if possible (Not all Compasses)

Line up Needle with Orienting Arrow

Compass with Adjustable Declination

Map Orientation

Compass with Adjustable Declination

Important Terminology

Put the
 "Dog in the
 Doghouse"
 or

"Red in the Shed"

Compass with Adjustable Declination

Map Orientation

Direction

Line up Compass with points

Compass with Adjustable Declination

Compass with Magnetic Declination Adjustment

Keep Needle in Orienting Arrow

"Red in the Shed" Or
"Dog in the Doghouse"

Compass Hack - DIY Magnetic Declination Adjustment

Carefully use a Marker to make a "Doghouse"

Problem: angles change each year

"Dog in the Doghouse"

Topographical Map Hack

Map can be modified with Magnetic North Lines

Problem:

- angles change each year

Magnetic North Lines Added

Use metal yardstick to copy and space out lines

Measuring Distance

Measure Distance

Show how to measure distances on a map using an orienteering compass.

SCALE 1:24000

SCALE 1:24000

Resection

Resection

Establishing Location on a Map

- You should be able to use features on a map to pinpoint your location
- Terrain features such as hills and lakes
- Turn angles on paths and roads
- Intersections between paths and roads and streams
- Edge of tree lines

Resection

Resection

- Resection is a method for determining an unknown geographic position by measuring angles with respect to known position(s)
- The more know positions you have, the more precise your calculation
- Better compass skills = better precision
- Type of compass used also affects your final result

Resection

Aim at

Terrain Feature

Pace Count

Pace Count

Orienteering Measurements

Determining both Distance and Azimuth required in orienteering

You know how to follow and Azimuth

Direction of Travel

Pace Count

Pace Count

Allows you to track distance without a tape measure

- Everyone's pace count is different
- A normal stride is around 0.75 m (30 inches)
- There are about 67 double steps per 100 m

Pace Count

Pace Count

- Pace count is effected by
- Leg length
- Load (weight carried)
- Traveling speed
- Terrain (vegetation, rocks, ice, etc.)
- Elevation change (uphill vs downhill)

Pace Count

Pace Count - 100m Course

Set up a 100 m Course in terrain you plan to traverse

- Measure pace out 100 m and back 100 m
- Determine average pace count

Pace Count

Pace Count - 100m Course Measuring

Pace can be measured several ways

- Single steps (over 100)
- Double steps (every time right foot hits ground)
- Time

Pace Count

Pace Count - 100m Course Measuring

- Measure pace count for:
- Walking
- Running
- Uphill
- Downhill
- Night

Pace Count

Pace Count - 100m Course Measuring

1 Bead per 100m

- When using pace count, keep track of each 100 m you travel
- Fingers might work up to about 500m
- Mark tick marks on paper
- Use "Ranger Beads"
- Avoid depending on keeping track of long distances in your head

1 Bead per 1,000m

Pace Count

Requirement 5 - Pace Count

Set up a 100-meter pace course. Determine your walking and running pace for 100 meters. Tell why it is important to pace-count.

Orienteering Techniques

Orienteering Techniques

Requirement 6c-Orienteering Terminology

Explain the following terms and tell when you would use them:

- Attack point
- Collecting feature
- Catching feature
- Aiming off
- Contouring
- Reading ahead
- Handrail
- Relocation
- Rough versus fine orienteering

Orienteering Techniques

Requirement 6c - Attack Point

Large, easily recognized feature that is near the control

- Easier to locate than control
- Helps you determine your exact location and reach the control
- Can use more precise navigation from attack point
- Pace count
- Good compass bearing

Attack Point
Trail Fork with

Orienteering Techniques

Requirement 6c-Collecting Feature

Obvious features along the route that will help guide you

- These lie between you and the control
- Such as a
- Large pond
- Small lake
- Building
- Sign
- Check-off features -
- You see these along the way
- Verify you are on the right route

Orienteering Techniques

Requirement 6c - Catching Feature

A catching feature lies beyond the control

- Lets you know you went too far

Orienteering Techniques

Requirement 6c - Aiming Off

 Use for linear attack points- Road
- Trail
- Stream
- Intentionally deviate to left or right
- When you hit linear target, you know what direction to turn

Orienteering Techniques

Requirement 6c - Contouring

Technique of following contour lines

- Follow same elevation
- Avoid lots of up and downs often easier to go around hill
- Avoid steep an dangerous terrain
- Avoid densely vegetated low areas

Orienteering Techniques

Requirement 6c - Reading Ahead

Keeping a clear mental picture of what should be coming up next

- Take time at control point to plan route
- Understand the what lies ahead
- Read map frequently to make sure you are on course
- What you see on the ground should match your map and route

Orienteering Techniques

Requirement 6c - Handrail

Linear features along the leg of a course that help guide you

- Streams
- Trails
- Roads
- Fences
- Power lines
- Advanced Handrails:
- Ridge lines
- Valleys
- Tree lines
- Forest fire burns
- Avalanche scars

Orienteering Techniques

Requirement 6c-Relocation

Determining location if you become potentially lost

- STOP! - further movement may make you more lost
- Use relocation features to determine your location
- Lakes and ponds
- Where stream forks

Retrace route if needed

- Bridge over stream

Orienteering Techniques

Requirement 6c - Rough versus Fine Orienteering

Rough Orienteering

- Use less precise movement to find collecting point
- Allows for speedy movement

Fine Orienteering

- More precise movement
- Use pace count and precise azimuth
- Slower movement
- Use Rough Techniques when feasible for speed
- Use Fine Techniques when necessary to find point

Staying Found

Staying Found

Staying Found - Thumbnail Navigation

- Keep map in pocket and NOT in backpack
- Refer to map often to keep up with location
- Follow map as you move by placing thumb over location
- Match features you see on the ground with those on the map
- This keeps you on route
- Keeps your map skills sharp
- Unlikely you are going to get lost or stray too far off course

Staying Found

Staying Found - Disorientation

- If you find you are unsure of your location
- STOP
- Pull out map and sit down
- Study map and look for landmarks
- Discuss route with crew
- Where was your last known point?

Staying Found

Staying Found - Lost

- If you find you are truly lost
- Movement will likely move you further off course
- Set up shelter
- Wait for search party to find you

Orienteering Maps

Orienteering Map

cascadeoc.org

Orienteering Map

cascadeoc.org

contour (5 m)

Legend

Orienteering Map

cascadeoc.org

Orienteering Map

cascadeoc.org

Orienteering Map

cascadeoc.org

contour (5 m)

Legend

Orienteering Map

cascadeoc.org

Topographic Maps

Contour Lines

Topographic Maps

ISOM 2017 Orienteering Map Symbols

\author{

Land forms

 Contour
 Index contour
 Form line
 Slope line
 Contour value
 Earth bank
 Earth wall
 \ldots Ruined earth wall
 Erosion gully
 Small erosion gully
 ○．Knoll
 －．Small knoll
 ．．Small elongated knoll
 \bigcirc Depression
 －Small depression Pit
 Broken ground
 －Very broken ground
 $\Delta \Delta$ Prominent landform feature}

Water and marsh

\rightarrow Uncrossable water
－Shallow water
v v Waterhole
Uncrossable river
Crossable watercourse
Small crossable
watercourse
－－－－－Minor／seasonal water

channel

Narrow marsh
＠Uncrossable marsh

Indistinct marsh
－Well，fountain or water tank
\leadsto Spring
＊＊Prominent water feature

Rock and boulders

$\pi \quad$ Impassable cliff
（3）Cliff
v Rocky pit，Cave
－Boulder，Large boulder
－Gigantic boulder
－Boulder cluster
该 Boulder field
検 Dense boulder field
Stony ground：slow
Stony ground：walk Stony ground：fight Sandy ground
－Bare rock
～Trench

Vegetation

Open land
Open land with scattered trees／bushes
Rough open land
Rough open land with scattered trees／bushes
 Forest：easy running Vegetation：slow running Undergrowth：slow running Vegetation：walkUndergrowth：walk
Vegetation：fight Vegetation：impassable Forest runnable
in one direction

Cultivated land
Orchard
Vineyard
Distinct cultivation boundary
．．．．．．．．．．．．．．Distinct vegetation boundary
－。 Prominent large tree
－．Prominent bush or tree
\times Prominent vegetation feature

Topographic Maps

ISOM 2017 Orienteering Map Symbols

Man-made features

Paved area
Wide road
Road
Vehicle track
Footpath
Small footpath
Less distinct small path
Narrow ride
Visible path junction
Indistinct junction
Railway
Power line, cableway or skilift
Major power line
Bridge/tunnel
Footbridge

Wall
\ldots Ruined wall
$\because \quad$ Impassable wall
\ldots Fence
-r- Ruined fence
"nT Impassable fence
Thn Crossing point
alfll Area that shall not be entered
चF. Building
\square Canopy
\because a Ruin

- t High tower, Small tower
- \uparrow Cairn, Fodder rack
\rightarrow Prominent line feature
$\# \#$ Prominent impassable line feature
- \times Prominent man-made feature

Technical symbols

| | Magnetic north line Registration mark
. 42 Spot height

Orienteering Control Symbols

Orienteering Control Symbols

Orienteering Control Symbols

Identify 20 international control description symbols. Tell the meaning of each symbol.

Orienteering Cont

Control Descriptions

Describe where control markers are found

Lynndale Park Permanent				
Beginner		0.9 km	30 m	
D				slart
1	30	,	<	Bend in path
2	44	,	<	Bend in path
3	32	-	1	S end of fence
4	21	$/$	O	5 sideof frad
5	37	2	\bigcirc	E edge of vegetation
O		180 m	(O)	Navigate 180 mto finish
Intermediate		2.0 km	90 m	
\triangle				Start
1	43	,'	- 0	W side of path
2	33	\checkmark	\bigcirc	SW edge of vegetation boundary
3	42	®	O.	Sside of root stock
4	35	-'י'		Pathiunction
5	26	O-	ர்	Top of low hilt
6	31	\square	L-	SW outside corner of building
7	20	O-		Low hill
8	25	1	-	E endof fence
9	28	,'	1	Sendo fpath
10	24	,	<	Bend in path
11	30	-'	<	Bend i p path
O		120 m	\%	Navigate 120 mtofinish
\|ntermediate		2.4 km	75 m	
D				Start
1	28	-'	1	Sendof path
2	40	\times	-	Wside of specialitem
3	39	,		Kıoll
4	41	,', ' ${ }^{\prime}$		Path junction
5	27	\bigcirc	Q	$\begin{aligned} & \text { Sedge of vegetation } \\ & \text { boundary } \end{aligned}$
6	36	-	- 0	W side of knoll
7	26	O-	ர்	Top of low hill
8	22	O-		Low hill
9	35			Pattijunction
10	38	-', ${ }^{\prime}$	O-	Eside of patri junction
11	29	- $\mathbf{\prime}^{\prime \prime}$ -		Path crossing
12	42	Q	?	Sside of root stock
13	23	A		Boulder
14	32	-	1	Sendo of ence
15	44	'	$<$	Bend i path
16	34	\cdots	0	Nedge of fleaing
\bigcirc		50 m	(0)	Navigate 50 mtof finsh

Control descriptions may look like hieroglyphics, but they are designed that way because orienteering is an international sport. By learning the symbols found on control descriptions, you'll be able to orienteer anywhere in the world!

There are eight available columns of information. But don't worry about understanding them all, because the first three columns have the most essential information, and are also the easiest to learn. For Beginner level courses we provide the meaning of the symbols in each column.

The FIRST COLUMN denotes what order you must find the controls. The SECOND COLUMN denotes the number that you will find on the physical control. So if you see " 2,33 ," that is the second control you must find and you will see the number 33 on the control when you find it.

The THIRD COLUMN describes the physical
feature where the control will be located. You should see this feature on your map in the center of the control circle.

The SEVENTH COLUMN tells you what side of a feature the control is on. So if the control is on a boulder, this column will tell you which side of the boulder the control is located. These
symbols are the most intuitive to learn, as well as are very helpful to know.

The OTHER COLUMNS take more time to learn, but don't show you much information that the map doesn't show you already. Fortunately, the columns that are the most challenging to learn are the least essential ones. intimidating, but don't let that stop you from orienteering. You can have fun and complete an orienteering course by reading just the first three columns. You can learn the symbols in the other

Orienteering Control Symbols

International Control Description Symbols

IOF Event Example				
M45 M50 W21				
	5	7.6 km		210 m
D		／		
1	101		$<$	
2	212 ス	\bullet	1	$\bigcirc \cdot$
3	135	双		－
4	246 ｜ \mid｜	\bigcirc		\bigcirc
5	$164 \rightarrow$	［］		$\cdot \mathrm{O}$
$\bigcirc--120 \mathrm{~m} \rightarrow-\rightarrow$				
6	185	大		－．
7	178	1		$\stackrel{1}{\circ}$
8	$147 \rightarrow$		2	
		，＇，${ }^{\prime}$		
$\bigcirc---250 \mathrm{~m}--\rightarrow$ O				

Orienteering Control Symbols

International Control Description Symbols

IOF Event Example			
M45 M50 W21			
5	7.6 km		210 m
$\rightarrow-$ - $150 \mathrm{~m}--\rightarrow \triangle$			
D	/ 6		
1101		<	
2212 \}	-	1	$\bigcirc \cdot$
3135	成		-
$4246\|\$\|$	\bigcirc		\bigcirc
$5164 \rightarrow$	「]		$\cdot \bigcirc$
$\bigcirc--120 \mathrm{~m}--\rightarrow$			
6185	N		-.
	IS		'O
8 147 -		2	
9 149	,', ${ }^{\prime}$		
$\bigcirc---250 \mathrm{~m}-\rightarrow$ (0)			

Orienteering Control Symbols

International Control Description Symbols

IOF Event Example					
M45 M50 W21					
	5		7.6 km		210 m
$\rightarrow-150 \mathrm{~m}-\rightarrow \triangle$					
D			／		
	101		\because	＜	
2	212	「	－	1	\bigcirc－
3	135		奴奴		$\stackrel{-}{-}$
4	246	\mid｜ \mid	\bigcirc		\bigcirc
5	164	\rightarrow	［］		－
$\bigcirc--120 \mathrm{~m}--\rightarrow$					
6	185		N		।
7	178		$1>$		$\stackrel{\text { L }}{ }$
8	147	\rightarrow	π	2	
$\bigcirc---250 \mathrm{~m}-\rightarrow \text { O }$					

IOF Event Example		
Classes M45 M50 W21		
Course number 5		
Length 7.6 km		Height climb 210 m
Distance to Start Triangle 150 m		
Start	Road，wall junction	
1	101	Narrow marsh bend
2	212	North western knoll，1m high，east side
3	135	Between thickets
4	246	Middle depression，east part
5	164	Eastern ruin，west side
Follow taped route 120 m away from control		
6	185	Stone wall，ruined，south east corner（outside）
7	178	Spur，north west foot
8	147	Upper cliff，2m high
9	149	Path crossing
Follow taped route 250 m from last control to finish		

Orienteering Control Symbols

International Control Description Symbols - Column C
 Which of any similar feature

Ref.	Symbol	Name	Description
0.1	\uparrow	Northern	The more northern of two similar features, or the northern-most of several similar features.
0.2	-	South eastern	The more south eastern of two similar features, or the south-eastern-most of several similar features.
0.3	\sim	Upper	Where the control feature is directly above a sim- ilar feature.
0.4	-	Lower	Where the control feature is directly below a similar feature.
0.5	$\mathbf{~}$	Middle	Where the control feature is the middle one of a number of similar features.

Orienteering Control Symbols

International Control Description Symbols - Column D
 The Control Features - Landforms

Ref.	Symbol	Name	Description	ISOM	1.9	\bigcirc	Hill	A high point. Shown on the map with contour lines.	101
1.1		Terrace	A level area on a slope.	101					
					1.10	\bigcirc	Knoll	A small obvious mound or knoll.	109
1.2	15	Spur	A contour projection or "nose" rising from the surrounding ground.	101					110
1.3		Re-entrant	A contour indentation; a valley; the	101	1.11	$)($	Saddle	The low point between two higher points.	101
					1.12	\bigcirc	Depression	A depression or hollow from which the ground rises on all sides. Shown on the map with contour lines.	101
1.4	NTM	Earth bank	An abrupt change in ground level which can clearly be distinguished from its	104					
			surroundings.		1.13	\cup	Small depression	A small, shallow, natural depression or hollow from which the ground rises on all sides.	111
1.5	67	Quarry	Gravel, sand or stone working in flat or inclined ground.	104					
1.6	+1+	Earth wall	A narrow wall of earth projecting above the surrounding terrain; may be partially stone faced, usually man-made.	$\begin{aligned} & 105 \\ & 106 \end{aligned}$	1.14	V	Pit	A pit or hole with distinct steep-sides. Usually man made. Used with symbol 8.6 to indicate a rocky pit.	$\begin{aligned} & 112 \\ & 203 \end{aligned}$
1.7	Λ	Erosion gully	An erosion gully or trench, normally dry.	107	1.15	u u	Broken ground	Clearly disturbed ground with features too small or too numerous to be mapped individually; including animal earths.	113 114
1.8	\cdots	Small erosion gully	A small erosion gully or trench, normally dry.	108	1.16	$*$	Ant hill (termite mound)	The mound made by ants or termites.	

Orienteering Control Symbols

International Control Description Symbols - Column D
 The Control Features - Rocks

Ref.	Symbol	Name	Description	ISOM
2.1	ПT	Cliff, Crag	A cliff or rock face. May be passable or impassable.	$\begin{aligned} & 201 \\ & 202 \end{aligned}$
2.2	A	Rock Pillar	A high, natural rock projection.	206
2.3	$\frac{1}{2}$	Cave	A hole in a rock face or hill side, often leading to underground workings.	203
2.4		Boulder	A prominent free-standing block of rock or stone.	$\begin{aligned} & 204 \\ & 205 \end{aligned}$
2.5	$\mathbf{\Delta A}_{\mathbf{\Delta}}^{\mathbf{\Delta}}$	Boulder field	An area covered by so many boulders that they cannot be individually mapped	$\begin{aligned} & 208 \\ & 209 \end{aligned}$

2.6	Δ	Boulder cluster	A small distinct group of boulders so closely clustered together that they cannot be individually mapped.	207
2.7		Stony ground	An area covered with many small stones or rocks.	$\begin{array}{\|l\|} \hline 210 \\ 211 \\ 212 \\ \hline \end{array}$
2.8	少	Bare rock	A runnable area of rock with no earth or vegetation cover.	214
2.9	$][$	Narrow passage	A gap between two cliffs or rock faces that face each other.	$\begin{aligned} & 201 \\ & 202 \end{aligned}$
2.10		Trench	A rocky or artificial trench.	215

Orienteering Control Symbols

International Control Description Symbols－Column D

The Control Features－Water and Marsh

Ref．	Symbol	Name	Description	ISOM
3.1	（ヘ）	Lake	A large area of water，normally mapped as uncrossable．	301
3.2	\tilde{v}	Pond	A small area of water，may be shallow or seasonal．	302
3.3	\tilde{V}	Waterhole	A water－filled pit or depression．	303
3.4	ε_{2}	River， Stream， Watercourse	A natural or artificial watercourse with either moving or standing water．	$\begin{aligned} & 301 \\ & 304 \\ & 305 \end{aligned}$
3.5	分	Minor water channel， Ditch	A natural or man made minor water channel which may contain water only intermittently．	306
3.6	\because	Narrow marsh	A narrow marsh or trickle of water，too narrow to be shown on the map with the marsh symbol．	309
3.7	三	Marsh	A permanently wet area with marsh vegetation．	$\begin{aligned} & 307 \\ & 308 \end{aligned}$
3.8	三引	Firm ground in marsh	A non－marshy area within a marsh，or between two marshes．	$\begin{aligned} & 307 \\ & 308 \end{aligned}$
3.9	\bigcirc	Well	A shaft containing water or a captive spring，clearly visible on the ground．Often with some form of man－made surround．	311
3.10	G_{3}	Spring	The source of a watercourse with a distinct outflow．	312
3.11	nu	Water tank， Water trough	A man made water container．	311

Orienteering Control Symbols

International Control Description Symbols - Column D

The Control Features - Vegetation

Ref.	Symbol	Name	Description	ISOM
4.1	\rangle	Open land	An area with no trees. Grassland, a meadow or a field. Also heath or moorland.	$\begin{aligned} & 401 \\ & 403 \end{aligned}$
4.2		Semi-open land	An area of open land with scattered trees or bushes.	$\begin{aligned} & 402 \\ & 404 \end{aligned}$
4.3	b	Forest corner	The corner or tip of a forested area projecting into open land.	
4.4		Clearing	A small area of land free from trees within the forest.	$\begin{aligned} & 401 \\ & 403 \end{aligned}$
4.5	"×	Thicket	A small area of forest where the tree cover or undergrowth is so dense that it is difficult to pass. May also be used for an individual bush (typically in Sprint competitions).	$\begin{aligned} & 408 \\ & 410 \\ & 411 \end{aligned}$
4.6	م	Linear thicket	A man-made line of trees or bushes that is difficult to cross. May also be used for a hedge (typically in Sprint competitions).	$\begin{aligned} & \hline 410 \\ & 411 \end{aligned}$
4.7		Vegetation boundary	A distinct boundary between different types of trees or vegetation.	416
4.8	M	Copse	A small area of trees in open ground.	$\begin{aligned} & 405 \\ & 406 \end{aligned}$
4.9	Δ	Prominent tree	An unusual or prominent tree in either open land or forest; frequently information is also given as to its type.	$\begin{aligned} & 417 \\ & 418 \end{aligned}$
4.10	\bigotimes	Root stock, Tree stump	The upturned root of a fallen tree, with or without the trunk. The stump of a tree.	

Orienteering Control Symbols

International Control Description Symbols - Column D

The Control Features - Man-Made Features

Ref.	Symbol	Name	Description	ISOM
5.1	$/$	Road	A metalled/asphalt surfaced or dirt road suitable for vehicles in normal weather conditions.	$\begin{aligned} & 502- \\ & 503 \end{aligned}$
5.2	\prime^{\prime}	Track / Path	A visible route made by people or animals. Tracks may be driven by rugged vehicles.	$\begin{aligned} & 504- \\ & 507 \end{aligned}$
5.3		Ride	A forest ride or a prominent trace through the terrain which does not have a distinct runnable path along it.	508
5.4	T	Bridge	A crossing point over a watercourse or other linear feature.	512
5.5	$\not x$	Power line	A power or telephone line, cableway or ski lift.	$\begin{aligned} & 510 \\ & 511 \end{aligned}$
5.6	$\not x^{x}$	Power line pylon	A support for power or telephone line, cableway or ski lift.	$\begin{aligned} & 510 \\ & 511 \end{aligned}$
5.7	v	Tunnel	A way under roads, railways, etc.	512
5.8	م8	Wall	A wall wall of stone or other materials. Used with symbol 8.11 to indicate a ruined wall.	$\begin{aligned} & 513 \\ & 515 \\ & 514 \\ & \hline \end{aligned}$

5.9	个	Fence	A wire or wooden boundary. Used with symbol 8.11 to indicate a ruined fence.	$\begin{aligned} & 516 \\ & 518 \\ & 517 \end{aligned}$
5.10	H1	Crossing point	A way through or over a wall, fence, or other linear feature, including a gate or stile.	519
5.11		Building	A standing brick, wood or stone structure.	521
5.12	$\boxed{\square}$	Paved area	An area of hard standing used for parking or other purposes.	501
5.13	[]	Ruin	The remains of a building that has fallen down.	523
5.14	x^{-1}	Pipeline; bobsleigh/ skeleton track	A prominent line feature such as a pipeline (gas, water, oil, etc.) or a bobsleigh/ skeleton track which is above ground level.	$\begin{aligned} & 528 \\ & 529 \end{aligned}$
5.15	T	Tower / Pylon	A metal, wooden or brick tower or pylon.	$\begin{aligned} & 524 \\ & 525 \end{aligned}$
5.16		Shooting platform	A structure attached to a tree where a marksman or observer can sit.	525

Orienteering Control Symbols

International Control Description Symbols - Column D

The Control Features - Man-Made Features

5.17	\bigcirc	Boundary stone, Cairn	A man made stone or pile of stones. A cairn, memorial stone, boundary stone or trigonometric point.	526
5.18	\uparrow	Fodder rack	A construction for holding feed for animals.	527
5.19	θ	Charcoal burning ground Platform	The clear remains of an area where charcoal was burned. A small level man made area on a slope (a platform).	$\begin{aligned} & 530 \\ & 115 \end{aligned}$
5.20	Δ	Monument or Statue	A monument, memorial or statue.	$\begin{aligned} & 530 \\ & 531 \end{aligned}$
5.21	\rceil	Canopy	An accessible area with a roof. A canopy or a covered passageway through a building.	522
5.22		Stairway	A stairway of at least two steps.	
5.23	§	Out of Bounds area	Out of Bounds area. Typically a flower bed or similar feature.	520

Orienteering Control Symbols

International Control Description Symbols - Column D

The Control Features - Prominent Features /Special Items

Ref.	Symbol	Name	Description	ISOM
6.1		Prominent feature / Special item	If used, an explanation of its meaning must be supplied to competitors in the pre-race information.	$\begin{aligned} & 115 \\ & 313 \\ & 419 \\ & 531 \end{aligned}$
6.2	\bigcirc	Prominent feature / Special item	If used, an explanation of its meaning must be supplied to competitors in the pre-race information.	$\begin{aligned} & 115 \\ & 313 \\ & 530 \end{aligned}$

Orienteering Control Symbols

International Control Description Symbols - Column E Appearance

Ref.	Symbol	Name	Description
8.1		Low	Where the control feature is particularly low or flat but this is not indicated on the map; e.g. Hill, low.
8.2		Shallow	Where the control feature is particularly shallow but this is not indicated on the map; e.g. Re- entrant, shallow.
8.3	C业	Deep	Where the control feature is particularly deep but this is not indicated on the map; e.g. Pit, deep.
8.4	$\ldots:$	Open	Where the feature is partially covered in undergrowth or bushes that are not indicated on the map; e.g. Ruin, overgrown.
8.5	$\therefore .$Where the feature is in an area where the tree cover is less than the surroundings but this is not indicated on the map; e.g. Marsh, open.		
8.6	\mathbf{A}	Rocky, Stony	Where the feature is in an area of rocky or stony ground not indicated on the map; e.g. Pit, rocky.

8.7	三	Marshy	Where the feature is in an area of marshy ground not indicated on the map; e.g. Re-entrant, marshy.
8.8	$\vdots \because$	Sandy	Where the feature is in an area of sandy ground; e.g. Spur, sandy.
8.9	Q	Needle leaved	Where the tree or trees associated with the control feature have needle shaped leaves; e.g. Prominent tree, needle leaved.
8.10	\&	Broad leaved	Where the tree or trees associated with the control feature are broad-leaved; e.g. Copse, broad leaved.
8.11	R	Ruined	Where the feature has fallen to ground level; e.g. Fence, ruined.

Orienteering Control Symbols

International Control Description Symbols - Column F

 Dimensions / Combinations / Bend| Ref. | Symbol | Name | Description |
| :--- | :---: | :--- | :--- |
| 9.1 | 2.5 | Height or
 Depth | Height or Depth of the feature in metres. |
| 9.2 | 8×4 | Size | Horizontal dimensions of the feature in metres. |
| 9.3 | 0.5
 3 | Height on
 slope | Height of the feature on a slope in metres. |
| 9.4 | 2 | Heights of
 two features | Heights of two features with the control between
 them. |

Orienteering Control Symbols

International Control Description Symbols - Column F

 Dimensions / Combinations / Bend| Ref. | Symbol | Name | Description |
| :--- | :---: | :--- | :--- |
| 10.1 | \searrow | Crossing | The point at which two linear features cross. |
| 10.2 | \searrow | Junction | The point at which two linear features meet; or
 where a linear feature meets the side or edge of
 an areal feature. |

If used, the two features which either cross or meet must be shown in columns D and E

Orienteering Control Symbols

International Control Description Symbols - Column F

 Dimensions / Combinations / Bend| D | E | F | | |
| :---: | :---: | :---: | :---: | :---: |
| | | \Varangle | Path crossing | The point at which two similar linear features cross. |
| | ε_{2} | \Varangle | Ride / Stream crossing | The point at which two different linear features cross. |
| | | y | Road junction | The point at which two similar linear features meet. |
| v_{2} | \because, | y | Stream / Narrow marsh junction | The point at which two different linear features meet. |
| \uparrow | | y | Fence / Building junction | The point at which a linear feature meets the side of an areal feature. |

Orienteering Control Symbols

International Control Description Symbols - Column F

 Dimensions / Combinations / Bend| Ref. | Symbol | Name | Description |
| :--- | :---: | :--- | :--- |
| 11.1 | Bend | Used where a linear feature makes a smooth
 change of direction; e.g. Path bend; River bend. | |

Orienteering Control Symbols

International Control Description Symbols - Column G Location of Control Flag

Ref.	Symbol	Name	Description
12.1		North east Side	Used where: a) The feature extends above the surface of the ground; e.g. Boulder, north east side; Ruin, west side. A control on the side of a raised feature will not usually be visible from the opposite side. b) The control is located on a linear feature but not at a corner, e.g. Track, east side; Stream bend, south west side.
12.2	Q		South east Edge
Used where: a) The feature extends down from the surface of the surrounding ground and the control is situated on the edge at ground level; e.g. Depression, south east edge. b) The feature extends over a significant area and the control is situated on the border of that area; e.g. Marsh, west edge; Clearing, north west edge.			
	West Part	Used where the feature extends over a significant area and the control is located neither at the centre, nor on any of the edges; e.g. Marsh, west part; Depression, south east part.	

		East Corner (inside)	Used where: a) The edge of a feature turns through an angle of 45-135 degrees; e.g. Open land, east corner (inside); Ruin, north west corner (outside). b) A linear feature turns a corner; e.g. Fence, south corner (inside); Stone wall, south west corner (outside). 12.4
12.5	\bullet	\ddots	South Corner (outside)
12.6	\bullet	Note: The side of a building may be treated as a linear feature and hence "building, east corner (inside)" does not mean "inside the building". The orientation of the symbol indicates the direc-	
tion in which the corner points.			

Orienteering Control Symbols

International Control Description Symbols - Column G Location of Control Flag

12.9	L.	Lower Part	Where the feature extends over two or more contours and the control is located near the bottom; e.g. Re-entrant, lower part.
12.10	\prod°	Top	Where the control is located at the highest point of the feature and this is not the default location; e.g. Cliff, top; Stairway, top.
12.11	\llcorner	Foot (no direction)	Where the control is located at the lower junction of the slope of the feature and the surface of the surrounding area and this is not the default location; e.g. Earth bank, foot; Stairway, foot.
12.12	\bigcirc	North east Foot	As above, but where the feature is large enough for the control to be placed in more than one location around it; e.g. Hill, north east foot.
12.13	Γ	Beneath	Where the control is located underneath the feature; e.g. Pipeline, beneath.
12.14	\bullet	Between	Where the control is located between two features; e.g. Between thickets; Between boulder and knoll.

When symbol 12.14 'Between' is used in Column G, the two features which the control is between must be shown separately in columns D and E.

Orienteering Control Symbols

International Control Description Symbols - Column H Other Information

Ref.	Symbol	Name	Description
13.1		First Aid post	Control site where First Aid is available.
13.2	\square	Refreshment point	Control site where Refreshments are available.
13.3	\boldsymbol{R}	Manned control	Manned control site.

Orienteering Control Symbols

International Control Description Symbols - Examples

Orienteering Control Symbols

International Control Description Symbols - Examples

Orienteering Control Symbols

International Control Description Symbols - Examples

Orienteering Control Symbols

International Control Description Symbols - Examples

Orienteering Control Symbols

International Control Description Symbols - Examples

Orienteering Control Symbols

International Control Description Symbols - Examples

Orienteering Control Symbols

International Control Description Symbols - Examples

Orienteering Control Symbols

International Control Description Symbols - Examples

Orienteering Control Symbols

International Control Description Symbols - Examples

Orienteering Control Symbols

International Control Description Symbols - Examples

Orienteering Control Symbols

Requirement 6a-Orienteering Map

Identify 20 international control description symbols. Tell the meaning of each symbol.
Please ID the following:
1.
2. π
3. O
4.
5.
6. -
7. m
15. ir
16.
17. \circ°
18. •
19. |"
20.

Orienteering Control Symbols

Orienteering Map

Show a control description sheet and explain the information provided.

Orienteering Compass

Orienteering Compass

Orienteering Maps and Compasses

Orienteering competitions generally use special maps that use Magnetic North instead of Grid North

These maps are used differently than that maps you may accustomed to using

There are also specialized Thumb Compasses designed for competition These compasses aren't required to complete, but it's good to know about them

Orienteering Compass

The Baseplate Compass

- Very versatile
- Transparent
- Simple
- Economical options
- Often get you pay for
- Quality varies

Stencil Hole
Declination Adjustment (Some models)
Orienting Arrow
Orienting Lines
Compass Needle
Declination Scale (fixed)

Baseplate

Orienteering Compass

Orienteering Compass

- Bare minimum for Orienteering

SUUNTO AIM-6 NH COMPASS

Orienteering Compass

Map Orientation

Line up
Map and Needle Like Declination Diagram

Adjust declination

UTM GRID AND 2019 MAGNETIC NORTH DECLINATION AT CENTER OF SHEET

Line up Needle with Orienting Arrow

Orienteering Compass

Map Orientation

declination at center of sheet

Orienteering Compass

Important Terminology

Put the
 "Dog in the
 Doghouse"

or

Orienteering Compass

Map Orientation

Direction

Line up Orienting Lines with Map

Compass with Magnetic Declination Adjustment

Keep Needle in Orienting Arrow

"Red in the Shed"
Or
"Dog in the Doghouse"

Compass using Magnetic North Adjusted Map

Keep Needle in
Orienting Arrow

"Red in the Shed"
Or
"Dog in the Doghouse"

Compass using Magnetic North Adjusted Map

Keep Needle in
Orienting Arrow

"Red in the Shed" Or
"Dog in the Doghouse"

Fold up Map and

Face Map in Direction of Travel

Universal Transverse Mercator

Search and Recue Merit Badge

Requirement 7 - Universal Transverse Mercator

7. Discuss the Universal Transverse Mercator (UTM) system, latitude, and longitude. Then do the following:
a. Using a 1:24,000 scale USGS topographic map, show that you can identify a location of your choice using UTM coordinates.
b. Using a 1:24,000 scale map, ask your counselor to give you a UTM coordinate on the map, then identify that location.
c. Show that you can identify your current location using the UTM coordinates on a Global Positioning System (GPS) unit and verify it on a 1:24,000 scale map.
d. Determine a hypothetical place last seen, and point out an area on your map that could be used for containment using natural or human-made boundaries.

Universal Transverse Mercator

Latitude

7. Discuss the Universal Transverse Mercator (UTM) system, latitude, and longitude.

Latitude

- Geographic coordinate that specifies the north-south position of a point on Earth
- Angle which ranges from 0° at the Equator to 90° (North or South) at the poles

Universal Transverse Mercator

Longitude

7. Discuss the Universal Transverse Mercator (UTM) system, latitude, and longitude.

Longitude

- Geographic coordinate that specifies the east-west position of a point on Earth
- Approximately the angle between the local vertical and the equatorial plane

Universal Transverse Mercator

Universal Transverse Mercator

7. Discuss the Universal Transverse Mercator (UTM) system, latitude, and longitude.

Universal Transverse Mercator (UTM) system

- System for assigning coordinates to locations on the surface of Earth
- Divides earth into 60 zones
- Most zones in UTM span 6 degrees of longitude
- Each zone is segmented into 20 latitude bands(8 degrees high)
- Location $=$ specifying the zone and the x, y coordinate in that plane

Image source: cmglee STyx, Wikialine and Goran tek-en commons.wikimedia.org/wiki/File:Universal Transverse Mercator zones.svg

Universal Transverse Mercator

Universal Transverse Mercator

Universal Transverse Mercator

Requirement 7 - Universal Transverse Mercator

U.S. Mational Grid
$100,000-\mathrm{m}$ Square ID
EU
Grid Zone Designation 100

UTM Location
10 U 0560295 mE 5359901 mN
1m Precision

Latitude Longitude 48.3893900°, -122.1855500°

Universal Transverse Mercator

Universal Transverse Mercator

- The northing values are measured continuously from zero at the Equator, in a northerly direction
- South of the Equator - the Equator is assigned a northing value of 10,000,000 meters
- A central meridian through the middle of each 6° zone is assigned an easting value of 500,000 meters
- Grid values to the west of central meridian are less than 500,000
- Grid values to the east of central meridian are more than 500,000

Universal Transverse Mercator

Universal Transverse Mercator

UTM Location
10 U 0560295 mE 5359901 mN
1 m Precision

> 0560295 mE
> 60 km east of center of zone 10 U
> (In this case, center is -123° Long)

```
5,359 km north of Equator
```

Latitude Longitude 48.3893900°, -122.1855500°

Universal Transverse Mercator

Universal Transverse Mercator

UTM Location
10U 0560295 mE 5359901 mN
1m Precision

MGRS 6 Digit Grid
10UEU 602599
100m Precision

MGRS 8 Digit Grid
10UEU 60295990
10m Precision

Latitude Longitude
48.3893900°, -122.1855500°

Grid Coordinates

Grid Coordinates

Finding Coordinates

A vital skill is you ever need to communicate your location.
Very useful in Search and Rescue and Military operations

Required in the Search and Rescue Merit Badge

Map Protractor

10 U 0560290
UTM 5359900

Search and Rescue Merit Badge

Requirement 7b - Universal Transverse Mercator

Using a 1:24,000 scale map, ask your counselor to give you a UTM coordinate on the map, then identify that location.

USGS US Topo 7.5-minute map for Morse Creek, WA 2020 Published Date: 2020-02-26
 WA Morse Creek 20200226 TM geo.pdf

Location	
10 U	0475850
UTM	5320410

Search and Rescue Merit Badge

Requirement 7c - Universal Transverse Mercator

Show that you can identify your current location using the UTM coordinates on a Global Positioning System (GPS) unit and verify it on a 1:24,000 scale map.

viewer.nationalmap.gov/basic

Homework

Search and Rescue Merit Badge

Requirement 7d - Universal Transverse Mercator

Determine a hypothetical place last seen, and point out an area on your map that could be used for containment using natural or human-made boundaries.
viewer.nationalmap.gov/basic

Homework

Wilderness Survival Navigation

Wilderness Survival Navigation

Direction Finding

Wilderness Survival Navigation

Direction Finding

- So you know where you are at?
- What is the safest or quickest way to get where we are going?
- What direction to we head in?
- Which way is North?

Wilderness Survival Navigation

Direction Finding - Ability

- Some people are just better at direction finding
- Some are just better at navigating
- They likely honed those skills early on
- They keep this talent sharp since others depend on them
- Many lack natural talent
- They know they lack talent so depend on GPSs and others
- They can not be trusted in a survival situation
- They can develop this skill - ideally before it is needed

Wilderness Survival Navigation

Direction Finding

- The compass is the generally the best method to use
- Know how to really use a compass
- Carry a compass on you
- Carry two compasses
- If you don't have a compass, there are a few ways to get by

Wilderness Survival Navigation

Celestial Navigation

Wilderness Survival Navigation

Celestial Navigation - Basics

- The Sun, moon and start travel across the sky in a very specific way
- Understanding the relationship of these will help you find your way

Wilderness Survival Navigation

Celestial Navigation - Sun and Shadows

- From a person's perspective, the sun moves from east to west
- Likewise, shadows move from west to east through the day
- In the Northern Hemisphere
- When the sun at its highest point in the sky
- Shadows point north
- At lower latitudes, this may not be appreciable
- Shadows will move clockwise
- In the Southern Hemisphere
- When the sun at its highest point in the sky
- Shadows point south
- At lower latitudes, this may not be appreciable
- Shadows will move counterclockwise

Wilderness Survival Navigation

Celestial Navigation - Sun and Shadows

- There are two basic shadow direction finding techniques
- Shadow-Tip Method
- Watch Method

Wilderness Survival Navigation

Celestial Navigation - Shadow-Tip Method

- Find a relatively flat and open area exposed to the sun

1. Place a 1 meter tall stick into level ground
2. Mark the shadow's tip with a rock or twig

- This is your West Point

3. Wait 10 to 15 minutes for shadow to move a few centimeters
4. Mark the shadow tips new position

- This is your East Point

5. Draw a straight line between the two marks

- This is an East-West line

6. If you stand facing your line with the first mark to your left and second to your right, you are facing north

Wilderness Survival Navigation

Celestial Navigation - Shadow-Tip Method

The sun travels across the sky from east to west Likewise, shadows move from west to east

Wilderness Survival Navigation

Celestial Navigation - Watch Method

- In the Northern Hemisphere - Point Hour Hand at Sun

Bisecting North-South Line
Between Hour Hand and 12

Sun is in the East before noon
Sun is directly South at noon
Sun is in the West after noon

Wilderness Survival Navigation

Celestial Navigation - Watch Method - Daylight Savings

- In the Northern Hemisphere - Point Hour Hand at Sun
- Daylight Savings Time? - North-South Line between Hour Hand and 1

Wilderness Survival Navigation

Celestial Navigation - Watch Method

- In the Southern Hemisphere - Point 12 at Sun

Sun is directly South at noon
Sun is in the West after noon

Wilderness Survival Navigation

Celestial Navigation - Using the Moon

Moon rises after Sunset

Moon rises Before Sunset

Wilderness Survival Navigation

Celestial Navigation - Using the Stars - Northern Skies

- In the North, one start marks True North
- Polaris aka Polar Star and North Star
- Bright star centered over norther pole of earth (within 1-2.5 ${ }^{\circ}$)
- Seen at 1^{0} North of equator and above
- Above latitude 70° - too high in the sky to be useful
- To find Polaris
- Find the Big Dipper
- Draw an imaginary line from the bottom outer to upper outer star
- Extend the distance $5 x$ the distance between these stars
- This line points to Polaris
- Opposite the Big Dipper sits Cassiopeia
- The center of Cassiopeia points at Polaris

Wilderness Survival Navigation

Celestial Navigation - Using the Stars

Wilderness Survival Navigation

Celestial Navigation - Using the Stars - Southern Skies

- There isn't a Polaris for the Southern Hemisphere
- There is a Southern Cross
- aka Crux
- Cross points to a spot over horizon that is generally south
- Made up of 4 stars, it resembles a Christian Star with small tilt
- Don't confuse with other "Crosses" (Diamond and False Crosses)
- Pointer Stars point at the peak of the Southern Cross
- To use the Southern Cross
- Draw through the top and bottoms stars of the cross
- Extend this imaginary line $\sim 5 x$ (4.5) the length between these stars
- This point sits over the horizon south of you

Wilderness Survival Navigation

Celestial Navigation - Using the Stars

Wilderness Survival Navigation

Celestial Navigation - Using the Stars - Bearings

- You can use Stars as bearing points if you have a compass
- Note that Stars move across the sky over time
- Norther stars are useful for about 30 minutes
- Southern stars are only useful for about 15 minutes
- After this time period, you will need to pick a new star

Wilderness Survival Navigation

Celestial Navigation - Using the Stars - Star "Shadow"

- Simulate a shadow from a star or planet using a taunt line
- Mark first "shadow" and wait 15-20 minutes and mark a second point

Wilderness Survival Navigation

Natural Navigation

Wilderness Survival Navigation

Natural Navigation - Plant Growth

- In the Northern Hemisphere the sun hit plants from the south
- Lone evergreen trees will always be more bushy on the south side
- Birch and poplar tree bark is
- Whitest on the south side
- Darkest on the north side
- In the Southern Hemisphere the sun hit plants from the north

Wilderness Survival Navigation

Natural Navigation - Plant Growth

- Moss grows on the North Side of the tree? (Northern Hemisphere)
- Nope
- Sometimes it grows all around it depending on moisture
- Often the greener side points south at sun
- Of note, tree moss is a potentially great Firestarter - Unfortunately, where there is abundant moss, generally everything is wet

Wilderness Survival Navigation

Natural Navigation - Plant Growth

- Stumps
- Growth is generally more vigorous on side of sun exposure
- Rings are more spread out on sunny side
- Rings closer together on shade side

Wilderness Survival Navigation

Natural Navigation - Plant Growth and Snow

- Slopes
- In the Northern Hemisphere
- North facing slopes receive less sun
- Cooler and moister
- In summer there may be patches snow
- South facing slopes receive more sun
- Warmer and drier
- In Winter, trees are first to lose snow
- Snowpack is generally shallower due to sun melt

Wilderness Survival Navigation

Natural Navigation - Winds

- Some places have Prevailing Winds
- Knowing the prevailing winds of certain areas can prove helpful
- Trees will be bent in the direction the wind is blowing

Tracking

Tracking

Tracking

Tracking and Counter-Tracking

In a survival situation you may need to be able to

- Track and find a person
- Follow tracks to civilization or help
- Track an animal
- Avoid being tracked and employ counter-tracking techniques
- Track someone who is using counter-tracking techniques

Tracking

Clue Awareness

Clue Awareness

- All kinds of clues can be helpful
- Subject - best clue you might find
- Tracks or altered condition of vegetation caused by the subject
- Articles of clothing or equipment
- Tissue paper
- Food or beverage wrappers
- Fire pits
- Crushed grass where a subject slept or walked
- Blood or scrape marks on a hill side or cliff where a subject fell
- Absence of clues in area is also important information

Tracking

Evidence Preserve

Evidence Preservation

- We are all track erasers
- We can destroy tracks
- We add extra tracks
- Minimize impact on area
- Stay off obvious tracks and other clues
- Stay off the soft dirt parts of trails where tracks can be found
- Walk in the lead member's footprints to both reduce tracks

Tracking

Tracking

Tracking the Subject

- Seems really cool, especially in fantasy stories and movies
- In real life, not for everybody
- Requires a lot of patience
- Requires a lot of teamwork
- Requires a lot of kneeling

Tracking

Tracking

Tracking the Subject

- Average stride length is about 18 to 20 inches long
- Resulting in over 3000 steps taken for each mile of travel
- This leaves thousands of clues behind
- Everyone makes a different track
- Knowing sole pattern of subject is very valuable
- Knowing how to read a track is even more vital
e^{3}

Tracking

Tracking

Tracking the Subject

- Tracking Stick allows measurement of
- Length of the shoe or boot
- Width of shoe or boot
- Stride of steps
- This helps you eliminate following non-relevant clues

Tracking

Tracking

Tracking the Subject

- Angle of light helps make tracks stand out
- You want a light source coming at you at a low angle

Tracking

Tracking

Tracking the Subject

- Angle of light helps make tracks stand out
- You want a light source coming at you at a low angle

Tracking

Tracking

Tracking the Subject

- Tracking Indicators
- Regularity
- Flattening
- Transfer
- Discards
- Color Change
- Disturbance

Tracking

Tracking

Tracking the Subject

- Ground Signs
- Ground level
- Footprint fragments
- Grains of sand on plants
- Dirt prints on an asphalt road
- Dislodged or crushed stones
- Flattening of a surface area
- Mud cloud at stream crossing
- Discarded Trash
- Cigarette butts

Tracking

Tracking

Tracking the Subject

- Low/Bottom Signs
- Below knee height
- Short grass pushed in same direction
- Broken and bruised vegetation

Tracking

Tracking

Tracking the Subject

- High/Top Signs
- Above knee height
- Broken branch
- Damaged bark

Tracking

Tracking

Tracking the Subject

- Track Pursuit Drill (Use at Last Definite Sign - LDS)

1. Assessment of general direction
2. Eliminate openings and finalize general direction
3. Look for farthest sign and connect it back to LDS
4. Look through the vegetation for the subject (quarry)
5. Check to left and right for counter-tracking tactics (Military/Police)
6. Plan and memorize your next footsteps
7. Move forward with stealth (Military/Police)

Tracking

Tracking

Tracking the Subject

- Track Casting Drill (Reestablish track)

1. Initial Probe - probe 3-5 meters from LDS
2. Initial Cast $-10-15$ meters back from LDS; probe $10-15 \mathrm{~m}$ radius
3. Extended Search
4. Most Probable Search Area

- Shelter
- Natural lines of drift

Tracking

Tracking

Tracking the Subject

- Two basic tenets of an effective tracker
- Do not advance beyond the last print until the next one is found
- Do not destroy clues

Tracking

Attraction

Locating the Subject using Attraction

- Sound sweeps using whistles
- Make sound at a prescribed time
- Then are all quiet and listening during a second prescribed time
- Sound sweeps using vehicle horns
- Used to waken sleeping subject
- Coordinated using radios
- Calling out name - you can only yell for so long

- Smoke
- Lights

Tracking

Attraction

Locating the Subject using Attraction

- Only works if Subject is
- Alive
- Conscious
- Willing to be found

Tracking

Trial Sweep

Locating the Subject using Trail Sweep

- Visual Sweep takes much longer than a Sound Sweep
- Requires a lot of focus and attention to detail
- Used to find clues as well as unresponsive subjects

Tracking

Trial Sweep

Locating the Subject using Trail Sweep

- Sweeps commonly fall into the following categories:
- Road or trail
- Cross-country
- Mixture of both

Tracking

Trial Sweep

Locating the Subject using Trail Sweep

- Trail/road sweeps include searching of adjacent vegetation and terrain

Resources

Resources

Resources

- Merit Badge Pamphlets
- Backpacking
- Search and Rescue
- Orienteering
- Maps
- apps.nationalmap.gov USGS Maps
- National Geographic Quad Maps - In more printer friendly format
- Military Manuals
- FM 3-25-26 Map Reading and Land Navigation

Instructor's Corner

Instructor's Corner

Instructor's Corner

- Thank you for teaching our scouts the Map and Navigation Skills.

